

Methods for Setting GHG Reduction Targets for Land Use and Transportation under SB 375

Topics

- Roles of BMPs and Models
- Blueprints as a Basis for Setting Targets
- Accounting for Regional Differences
- Equity and Degrees of Difficulty
- Remaining Questions

Respective Roles of BMPs and Models in Evaluating GHG Reduction Strategies

- Roles of BMPs and Models
- · Blueprints as a Basis for Setting Targets
- Accounting for Regional Differences
- Equity and Degrees of Difficulty
- Remaining Questions

SB375 Target Setting and Modeling Objectives

- · Aggressively achievable regional targets that add up
- Apply targets on pro-rata basis
- · Avoid penalizing early achievers
- Accountability
 - Verifiable performance (modeling or performance checklist?)
 - Accurate, consistent modeling at earliest possible date
 - Standard, realistic assumptions on fuel price, vehicle performance
 - Scalable to local level
- Allow fast-growing MPOs to get on course:
 - Assist in developing advanced capabilities
 - Coordinate with other reporting responsibilities

Advantages of BMP Approach

- Understandable to non-technical audiences
- Uniform (but not tailored) assumptions from one application to the next
- Allows selection of a strategy package by inspection
- Available in short-term
- Applications easy to check and verify

Why Enhanced Models Are Needed – Part 1

- Regional variations
 - Different growth rates
 - Jobs rich vs housing rich regions
 - Household size
 - Price sensitivities
 - Critical mass of transit or other prerequisites
- Complex interactions among land use and transportation measures
- Factors critical to GHG estimation: trips, lengths, speeds
- Evaluation of induced travel

Why Enhanced Models Are Needed – Part 2

- Validation of estimates, such as traffic volumes, fuel sales monitoring
- Need to consider funding constraints, revenue generation
- Different strategy contexts for different MPO's
- Advantages of developing strategies through sensitivity testing
- SB375 requirement for improved modeling

Context for Model Improvements Program

- CTC RTP Guidelines for AB32, four levels of recommendation based on
 - Regional growth rate
 - Congestion levels, AQ attainment
 - Present or planned significant transit, transit use
 - Planned roadway construction
- Caltrans 2007 Recommendations on Modeling Tools
- New research findings on MXD, TOD, Infill, 4D Meta
- 4D development studies in many regions

Suggested SB375 Model Improvement Program

Step	Method
Develop draft target-setting scenarios	BMP Scorecards
Test draft target-setting scenarios	SST*
Improved models for next RTP	1st Stage Model Upgrades
Better models for subsequent RTP	2 nd Stage Model Upgrades

* SST: simplified, standardized tool for evaluating the combined effects of BMPs while accounting for regional differences.

Suggested SB375 Model Improvement Schedule

Dec. 2009	Develop BMP Scorecards Set Model Performance Standards
March 2010 June 2010	Develop and Apply SST* Model Diagnostics, Improvement Plan
Dec. 2010	1st Stage Model Upgrades
2011 - 2014	2 nd Stage Model Upgrades

 * SST: simplified, standardized tool for evaluating the combined effects of BMPs while accounting for regional differences.

BMP Scorecards (2009)

Dec. 2009	Develop BMP Scorecards
Dec. 2009	Model Performance Standards
March 2010*	Develop and Apply SST**
June 2010	Model Tests, Improvement Plan
Dec. 2010	1st Stage Model Upgrades
2011 - 2014	2 nd Stage Model Upgrades

- List of measures
- Prerequisite conditions
- Range of effectiveness*
- Interdependencies*
- Performance standards for SST
- Gateway to more thorough analysis
- * Informed by expert panel

Set Model Performance Standards (2009)

Develop BMP Scorecards

Model Performance Standards

Develop and Apply SST**

Model Tests, Improvement Plan

1st Stage Model Upgrades

2nd Stage Model Upgrades

Dec. 2009

March 2010*

June 2010

Dec. 2010

2011 - 2014

- Accuracy standards*
- Validation standards*
- Consistency standards
- Transparency
- Stability: "noise" reduction measures
- Model sensitivity (e.g. BMP effectiveness ratings)**
- * Guidelines set by Caltrans, FHWA and FTA
- ** Criteria informed by expert panel

Develop and Apply SST (2009-2010)

Dec. 2009	Develop BMP Scorecards
Dec. 2009	Model Performance Standards
March 2010*	Develop and Apply SST**
June 2010	Model Tests, Improvement Plan
Dec. 2010	1st Stage Model Upgrades
2011 - 2014	2 nd Stage Model Upgrades

- Translate BMP criteria and effectiveness ratings into factors for SST
- Develop and validate SST, a simplified, standardized, spreadsheet tool for evaluating interactions among BMPs (e.g. iPLACE3S, Envision, UPLAN)
- Apply SST in scenario testing and target setting
- * SST: simplified, standardized tool for evaluating the combined effects of BMPs while accounting for regional differences.

Perform Model Diagnostics (2009-2010)

	Develop BMP Scorecards		
Dec. 2009	Model Performance Standards		
March 2010*	Develop and Apply SST**		
June 2010	Model Tests, Improvement Plan		
Dec. 2010	1 st Stage Model Upgrades		
2011 - 2014	2 nd Stage Model Upgrades		

- Assess model ability to meet performance standards for accuracy, sensitivity, stability, consistency*
- Develop improvement plan for Stage 1 model upgrades
- Peer review process
- Possible outside support, Prop 84 funding
- * Including assumptions on fuel price, vehicle fuel economy

Stage 1 Model Upgrades (2010)

 Address findings of model testing, through in-stream or post-process elasticities and 4D adjustments

Dec. 2009	Develop BMP Scorecards
Dec. 2009	Model Performance Standards
March 2010*	Develop and Apply SST**
June 2010	Model Tests, Improvement Plan
Dec. 2010	1st Stage Model Upgrades
2011 - 2014	2 nd Stage Model Upgrades

- For scenario development, parcel-level visioning interface (eg SCAG Envision, i-PLACE3S, UPLAN)
- Use standard reporting template, listing:
 - o Land use and transport strategies employed
 - o Expected results*, actual results, reasons for differences
- Calibrate estimates of VMT, trip generation, speeds to empirical data*

*Based on criteria set by FHWA, FTA and Caltrans, and expert panel. Possible additional support, Prop 84 funding

Stage 2 Model Upgrades (2011-2014)

Develop BMP Scorecards

Model Performance Standards

Develop and Apply SST**

Model Tests, Improvement Plan

1st Stage Model Upgrades

2nd Stage Model Upgrade

Dec. 2009

March 2010*

June 2010

Dec. 2010

2011 - 2014

- Activity-based models or equivalent in largest regions
- 4-step models in regions with transit and TDM
- Sensitive to all strategies included in SCS / APS:
 - Demand-side "Ds"
 - Supply-side: ITS and TSM, dynamic speed and delay, induced travel
 - Pricing
- · Validate GHG estimates versus odometer or fuel purchase data
- · Vehicle ownership model, fuel consumption
- Continued monitoring of fuel and VMT odometer data for future model refinement and recalibration
- Establish State service bureau for sharing data, innovations and standardized methods, possible Prop 84 funding

• Land use compactness: infill/TOD, density, mix, connectivity • Land use plus ambitious transit spending • Land use plus parking/road pricing • Land use plus transit plus pricing

Regional Differences -- Uncontrollable

- · Growth rate
- Socio-economics
- Land value
- Committed development projects
- Committed transportation expenditures
- · Legacy land patterns and infrastructure

Regional Differences – Other GHG Precursors

- Job/ housing balance
- Total transportation expenditures
- Proportion of transportation expenditures for roads vs transit and non-motorized
- Relative amounts of highway lane miles, transit revenue miles, and mode choice
- Pricing strategies
- Development density, diversity, design
- Percent infill vs greenfield

Regions with high growth rates (> 1.7% per year) project per

Effects of RTP Land Use on CO₂

FEHR & PEERS

- capita CO2 changes of 8% or more (up or down)
 Regions with low growth rates (<1.0% annually) project changes
- in per capita CO2 of less than 2% (up or down)
 Regions with good jobs/housing balance (between 1.1 and 1.4)
- project stable or decreasing per capita CO2,
- Those with poor balance project an increase in CO2 per capita.
- High-growth regions expanding at low densities (<1 person per acre) increased per capita CO2 at a substantially greater rate than those growing at higher densities (>1.5 per acre).

GHG Effects of Smart Growth Land Use: 5% SANDAG Greenhouse Gas Impacts (2030) RTP: 1.3% per capita GHG reduction from current year (2006) Smart growth scenario: 4.9% per capita GHG reduction from current year Percentage of residential infill and redevelopment increases from 37% to 47% Greenfield development decreases from 63% to 52% Includes expanded but not comprehensive pricing Excludes model sensitivity

Methodology for Setting Targets: Best-Practices vs Game-Changers

Land Use
Transport, TDM
Pricing

- Consider variations among regions:
 - Different growth rates
 - Historic land use patterns, land value, job/housing ratio
 - Historic transportation investments
 - Readiness and critical mass for major policy shifts

Methodology for Setting Targets: Land Use Similarities and Differences

Land Use
Transport, TDM
Pricing, Tech

- Daily VMT/capita varies from about 15 to 25, with the 4 largest MPO's clustered near statewide average of 20
- Population growth rate to 2020 is 10% to 15% in coastal regions, and 20% to 40% in Valley, but
- For areas of similar size, number of new residents added by 2020 is similar (400 to 600k) in each of: SANDAG, SACOG, Bay Area, 3 sub-regions of SJ Valley, 4 to 6 SCAG subregions

Methodology for Setting Targets: Strategies for Mature vs Growth Regions

Transport, TDM
Pricing, Tech

- Target regional accountability for <u>future</u> decisions, D's and location-efficiency for new development, e.g.:
 - SCAG, SANDAG, Bay Area: focus growth at infill opportunity sites
 - Valley: create communities with density, mix, connected design, neighborhood schools and services, suite of transport options

Methodology for Setting Targets: Transportation Similarities and Differences

Land Use
Transport, TDM

Pricing, Tech

- Percentage of recent transportation investment in roads versus transit and non-motorized modes
- Readiness for pricing: SCAG, SANDAG, Bay Area

Levels of Ambition (largest MPO's)						
VA/: al.	e range even	MPO 2035	Plans	2035 Scenarios		
amon	RTP Range	RTP Avg	Range	Average		
Compact, Infill Development	Compact % of Housing Growth Infill % of Housing Growth	15% - 73% 27% - 49%	52% 34%	49% - 79% 47% - 62%	59% 58%	
Transit Evnenditure Rate	% of Expenditures on Non-Roads	19% - 73%				
Increase Reduction in Lane Miles / Capita		16% - 35%	19%		24%	
Auto Operating Cost Increase	Increase in Auto Operating Cost	0% - 56%	34%	0% - 88%	74%	

Levels of Ambition (largest MPO's)							
Scena	erios increase	MPO 2035	Plans	2035 Scenarios			
Scenarios increase infill and pricing		RTP Range	RTP Avg	Range	Average		
Compact, Infill Compact % of Housing Growth Development Infill % of Housing Growth		15% - 73% 27% - 49%	52% 34%	49% - 79% 47% 62%	59% - 58%		
Transit Expenditure Rate	% of Expenditures on Non-Roads	19% - 73%					
Increase	Reduction in Lane Miles / Capita	16% - 35%	19%		24%		
Auto Operating Cost Increase	Increase in Auto Operating Cost	0% - 56%	34%	0% 88%	74%		

Other Opinions on Ambitious Strategies P FEHR & PEER TAXASSERIAGIS CONSIGNATION TO STRATEGIES						
Expert Opinions on Scenario Criteria						
Strategy	Status Quo	More Aggressive	Max Effort			
Compact, Infill Development	50%	75%	90%	Randall Lewis, Chris Nelson, ULI Moving Cooler		
Transit Expenditure Rate Increase	50%	100%	300%	+ High Speed Rail, HOV lanes, TDM		
Auto Operating Cost Increase	50%	70%	150%	+ Cordon, Congestion, Parking Pricing		

	Strategy	MPO 2035 Plans	2035 Scenarios	Experts
Compact, Infill Development	Compact % of Housing Growth Infill % of Housing Growth	52% 34%	59% 58%	70%-90%
Transit Expenditure Rate	% of Expenditures on Non-Roads			100%-300% +
Increase	Reduction in Lane Miles / Capita	19%	24%	100 /0-300 /0 +
Auto Operating Cost Increase	Increase in Auto Operating Cost	34%	74%	70% - 150% +

Ambitious but Achievable Equity and Degrees of Difficulty

- Roles of BMPs and Models
- Blueprints as a Basis for Setting Targets
- Accounting for Regional Differences
- Equity and Degrees of Difficulty
- Remaining Questions

Sample Template for Reporting Scenario Strategies FEHR & PEERS Expected Benefit Justification Strategy* Ambitious/ Level in Achievable Scenario for Scenario Benefit** Range VMT/ Change from Level capita Base** **Growth at Infill Locations** x% of infill 70% 50% 15% 10% sites 25% remedial **Density of Growth** 60% < **→** 70% Market 5% 3% -Increment conditions 10% xyz **Diversity of Growth** 80% 5% 80% n/a 2% -12% Increment * Specific measures that may reinforce or amplify measures in the list include parking cash-out, parking maxima, unbundled parking, PAYD, TDM coordinator, transportation information programs. Some of these supporting measures are necessary though possibly not sufficient to achieve significant benefit. ** Final values to be provided by expert panel *** Range varies by: region size, growth rate, demographics, prior investment in transit, interaction with complementary and compromising measures included in strategy, and critical mass factors.

Sample Template for Reporting Scenario Strategies

	Strategy*	Ambitious/ Achievable Change from Base*
1	Growth at Infill Locations	70%
2	Density of Growth Increment	60%
3	Diversity of Growth Increment	80%
4	% of Growth within ½ mile of Rail/BRT	20%
5	Context Sensitive Design, Connectivity Stds	90%
6	Transit Revenue Miles per Capita	50%
7	Transit Trips Subsidized	20%
8	Jobs Subjected to Paid Parking	15%
9	VMT Tolled	10%
10	Neighborhood Schools, Safe Routes	50%

ரி Greater Responsibility for High Growth Regions? FERRA PEERS

* Percentages are hypothetical, not recommendations

Should regions that are growing faster have to reduce their VMT at a faster rate?

	2005 VMT/Capita	Growth to 2035	% Rate Reduction	Target VMT/Capita	Rate Reduction	
	20	30%	10%	18.0	2.0	100%
Uniform VMT Rate Reduction	20	75%	10%	18.0	2.0	
10% Based on Total Population						
1070 Zucou on Tour Topulation	15	30%	10%	13.5	1.5	60%
	25	75%	10%	22.5	2.5	
	20	30%	5%	19.1	0.9	54%
Unfirom VMT Rate Reduction 20% of Growth Increment	20	75%	9%	18.3	1.7	J 4 /0
	15	30%	5%	14.3	0.7	32%
	25	75%	9%	22.9	2.1	

Greater Responsibility for High Growth Regions? FEHR & PEERS

Should regions that are growing faster have to reduce their VMT at a faster rate?

	2005 VMT/Capita	Growth to 2035	% Rate Reduction	Target VMT/Capita	Rate Reduction	
	20	30%	10%	18.0	2.0	100%
Uniform VMT Rate Reduction	20	75%	10%	18.0	2.0	
10% Based on Total Population						
1070 2 400 to 11 10 to 11 10 particulor.	15	30%	10%	13.5	1.5	60%
	25	75%	10%	22.5	2.5	
	20	30%	5%	19.1	0.9	54%
Unfirom VMT Rate Reduction	20	75%	9%	18.3	1.7	J 4 /0
20% of Growth Increment						
2070 Of Growth morement	15	30%	5%	14.3	0.7	32%
	25	75%	9%	22.9	2.1	

ரி Greater Responsibility for High Growth Regions? हिंद्दा இதியில் இதியில் இதியில் இதியில் இதியில் இதியில் இதியில்

Should regions that are growing faster have to reduce their VMT at a faster rate?

	2005 VMT/Capita	Growth to 2035	% Rate Reduction	Target VMT/Capita	Rate Reduction	
Uniform VMT Rate Reduction	20	30%	10%	18.0	2.0	100%
	20	75%	10%	18.0	2.0	
10% Based on Total Population)				
	15	30%	10%	13.5	1.5	60%
	25	75%	10%	22.5	2.5	
	20	30%	5%	19.1	0.9	54%
Unfirom VMT Rate Reduction	20	75%	9%	18.3	1.7	0170
20% of Growth Increment						
20% of Growth increment	15	30%	5%	14.3	0.7	32%
	25	75%	9%	22.9	2.1	

If reduction is based only on growth increment, fast growth regions could have twice as much responsibility to reduce VMT/ capita as slower growth regions.

Greater Responsibility for High Growth Regions?

Should regions that are growing faster have to reduce their VMT at a faster rate?

	2005 VMT/Capita	Growth to 2035	% Rate Reduction	Target VMT/Capita	Rate Reduction	
Uniform VMT Rate Reduction	20	30%	10%	18.0	2.0	100%
	20	75%	10%	18.0	2.0	
10% Based on Total Population)				
1070 Zadou dii Totali Topalalidii	15	30%	10%	13.5	1.5	60%
	25	75%	10%	22.5	2.5	
Unfirom VMT Rate Reduction 20% of Growth Increment	20	30%	5%	19.1	0.9	54%
	20	75%	9%	18.3	1.7	
	15	30%	5%	14.3	0.7	32%
	25	75%	9%	22.9	2.1	

Regions with lower starting VMT per capita would have lower trip rate reduction requirements regardless of respective growth rates.

Credit for Prior Accomplishments?

Should regions whose base-year VMT is higher have to reduce at a faster rate?

	2005 VMT/Capita	Growth to 2035	% Rate Reduction	Target VMT/Capita	Rate Reduction	
Unfirom VMT Rate Reduction 20% of Growth Increment	20	30%	5%	19.1	0.9	54%
	20	75%	9%	18.3	1.7	
	15	30%	5%	14.3	0.7	32%
	25	75%	9%	22.9	2.1	
	15	30%	3%	14.5	0.5	18%
Accelerated Rate Reduction for High Generators: 40% of Rate over Practical Min	25	75%	10%	22.4	2.6	
	15	50%	4%	14.3	0.7	33%
	25	50%	8%	23.0	2.0	

Region closer to practical min of 10 VMT/Capita would have to reduce at 1/3 the rate

Credit for Prior Accomplishments?

Should regions whose base-year VMT is higher have to reduce at a faster rate?

	2005 VMT/Capita	Growth to 2035	% Rate Reduction	Target VMT/Capita	Rate Reduction	
Unfirom VMT Rate Reduction 20% of Growth Increment	20	30%	5%	19.1	0.9	54%
	20	75%	9%	18.3	1.7	
	15 25	30% 75%	5% 9%	14.3 22.9	0.7 2.1	32%
	15	30%	3%	14.5	0.5	18%
Accelerated Rate Reduction for High Generators: 40% of Rate over Practical Min	25	75%	10%	22.4	2.6	
	15	50%	4%	14.3	0.7	33%
	25	50%	8%	23.0	2.0	

Slow-growth region closer to practical min would have to reduce at less than 1/5 rate

Addressing Equity Issues – Part 1

- Requiring same GHG/capita of existing and new development (both as a % reduction in existing regional average):
 - avoids shifting economic burden from one region to another,
 - reduces risk of excessive burden on land price and development cost in rapidly growing regions
- Encouraging compact sustainable development for both infill and greenfields brings economic benefits to communities and households of different socioeconomic groups

Addressing Equity Issues – Part 2

- Targets based on both population and employment assure that regions don't benefit unfairly from accommodating jobs and retail without housing
- Alternative approach: assign regions with excess jobs or retail responsibility for ½ of the GHG associated with the interregional trips they attract
- Consider not only balance of jobs and housing but socio-economic match

Remaining Questions

- Do RTP and Blueprint studies performed to date provide sufficient evidence of ambitious but achievable percent reductions?
- In what time frame should pricing strategies be required?
- Unresolved equity issues?
- Are target-setting methods and models scalable, to allow local jurisdictions to refine their land-use transportation strategies in a manner consistent with regional evaluation?